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To formulate a finitistic quantum field theory, the hypothesis is made that the 
continuum of space and time is countable possessing the cardinal number No. 
With the integers having the same cardinal number, it is therefore assumed that 
distances in space and time can be expressed only in integer multiples of a funda- 
mental length and time. To preserve the condition of causality, a quantized field 
theory derived under this assumption must be expressed in absolute space and 
time, with the field equation invariant under Galilei transformations. It is shown 
that such a theory not only can be formulated in full agreement with all the 
postulates of quantum mechanics, but that it leads to Lorentz invariance as a 
dynamic symmetry in the limit of low energies. If the smallest length and time 
are chosen to be equal to the Planck length and time, respectively, observable 
departures from the predictions of special relativity would become effective only 

19 in approaching the Planck energy of ~10 GeV. 

1. INTRODUCTION 

According to transfinite set theory, all countable numbers have the 
cardinal number N0. Because the counting is done by the natural numbers, 
they, too, have the cardinal number N0. The countable numbers include all 
rational numbers. But they also include all those irrational numbers which 
are roots of algebraic equations with rational coefficients. Because all these 
numbers can be obtained by a countable set of rules, they are accessible to 
a computer. These numbers densely cover the continuum of space and time, 
and for this reason can describe all of physical reality. However, in mathe- 
matics there are infinitely more noncountable numbers than countable num- 
bers; these are the transcendental numbers like rc and e. They cover the 
continuum even more densely and they have the much larger cardinal 
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number N1, which according to Cantor's continuum hypothesis is given by 

NI =2  ~~ (1.1) 

A differential equation used as a model to describe physical reality 
covers all mathematical numbers, not only those belonging to No, but also 
those belonging to N~. Therefore, if physical reality is restricted to those 
numbers having the cardinal number No, and which are also accessible to a 
computer, a differential equation would in principle be unsuitable to describe 
physical reality. A lattice space with difference equations on the lattice 
replacing the differential equations in the continuum is also unsuitable 
because such a space eliminates the continuum of densely spaced points and 
has a discrete rather than a continuous group of translations and rotations. 
In accordance with the assumption that physical space and time have the 
cardinal number No, we may postulate instead that all distances in space 
and time can be measured only in integer multiples of a fundamental length 
and fundamental time, with the integer multiples given by the natural num- 
bers and which have the cardinal number No. 

2. FINITE-DIFFERENCE OPERATORS 

Replacing differentials by finite differences, we follow a procedure 
outlined by Madelung (1950), expressing the finite-difference quotient of a 
function y =f(x)  

Ay _ f ( x  + !/2) - f ( x -  I/2) 
(2.1) 

Ax l 

through the finite-difference operator 

f ( x  + h) = ehd/d~f(x) =f(x)  + h df(x) 4 h2 d2f(x) t - . . .  
dx 2! dx  2 (2.2) 

With h = I/2, we find 

A_yy = sinh[(//2) d/dx]f(x  ) (2.3) 
Ax 1/2 

In a similar way we can define a Riemann integral average y value fi by 

fi = [ f (x  + I/2) + f ( x -  1/2)]/2 = cosh[(//2) d/dx] f (x )  (2.4) 

In the limit l-~0, (2.3) becomes dy/dx and (2.4) becomes y. Putting 
d/dx = 0,we may introduce the operators 

A0 = cosh[(//2)0] (2.5) 

A~ = (2//) sinh[(//2)0] 
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such that 

and furthermore 

AY=a,f(x)  
Ax 

y = Aof(x) 
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(2.6) 

a ,  = ( 2 / 0  2 aa0/ao (2.7) 

Both operators are solutions of 

[ dZ /dO 2- (l/2)2]A(0) = 0 (2.8) 

To obtain the difference operator in an N-dimensional space, we gen- 
eralize the differential equation for the one-dimensional "average value" 
operator A0(0) 

[d2/dO 2- (I/2)2]Ao(0) = 0 (2.9) 

to an N-dimensional space, where A0(0) must obey the condition 

lim Ao(0) = 1 (2.10) 
I--,0 

Calling the generalized N-dimensional "average value" operator A~, it 
would have to satisfy the partial differential equation 

, , 0(o,)2 AoN=0 (2.11) 

where 0; = 3/dxi, and where lim;_, o zX~ = I. 
Because A~ v must be a scalar, and because the only vector invariant 

which is a scalar is 

0 = ,~  0~ (2.12) 

one must have A~ v= A~v(0). One can therefore introduce into (2.1 l) N-dimen- 
sional polar coordinates, and one obtains the ordinary differential equation 

l 2 

The general solution of (2.13) can be expressed in terms of cylinder 
functions (Kamke, 1959). Having obtained the scalar operator function 
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AtV(o), one finds the generalized difference operator invariant under arbitrary 
translations and rotations as 

A~ = (2/1) 2 dAY~dO, (2.14) 

leading for N =  1 to (2.7). 
With the operators A~ and A~ one is in a position to translate any 

differential equation of mathematical physics into a finitistic form. The 
operators A~ and A~ involve differentials of infinite order, which means that 
this translation leads to differential equations of infinite order. Because these 
infinite-order differential equations somehow belong to ~1, we can see the 
close mathematical relationship between the countable and noncountable. 

3. CAUSALITY AND LORENTZ INVARIANCE 

Introducing a fundamental length into a relativistic quantum field 
theory can eliminate the divergences, but it also leads to a violation of 
causality. Because the metric of the Minkowski space-time is not positive 
definite, the property of proximity between two points in space cannot be 
formulated in a relativistically invariant way. As a solution to this problem, 
we offer the idea that the fundamental kinematic symmetry of nature is the 
Galilei group, with the Lorentz group a derived dynamic symmetry, with 
the latter valid only in the asymptotic limit of low energies. This idea suggests 
the proposal of the existence of a fundamental field described by an exactly 
nonrelativistic Heisenberg-type nonlinear field equation. As in Heisenberg's 
theory, the elementary particles and their interactions would have to be 
derived from this field. To avoid the divergences of relativistic quantum field 
theories, a cutoff length can be introduced without violating causality. If 
the fundamental field has collective excitations obeying the classical wave 
equation, then objects held together by the forces transmitted through these 
waves would exhibit Lorentz invariance as a dynamic symmetry. If these 
objects are elementary particles, it would explain why they can be described 
by Lorentz-invariant field theories. The fundamental field would somehow 
assume the role of the aether in pre-Einstein physics, but which, unlike the 
aether of pre-Einstein physics, is a quantized field. Not only would such a 
nonrelativistic field be Galilei invariant, but it would also establish a pre- 
ferred reference system at rest with the field. 

The existence of such a preferred reference system is supported by the 
distribution of galaxies in the universe, suggesting that matter derives its 
existence from a cosmological field at rest with the galaxies. The existence 
of a preferred reference system is also suggested to explain the faster-than- 
light quantum correlations in a rational way. 
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The most simple example for a nonrelativistic Heisenberg-type non- 
linear field is given by the operator field equation 

ih a--V--V=- h2 V2v- f2~v tV~  , (3.1) 
at 2m0 

where the operators V and V t obey the commutation relations 

[ g ( r )  v ) (r ' ) ]  = 8 ( r -  r') 
(3.2) 

[~(r) v(r')] = [gt(r) ~,+(r')] = 0 

In (3.1), mo is a mass and ro a length. The coupling constant f will be 
determined from the condition of Lorentz invariance in the long-wavelength 
limit. 

With the Hartree approximation 

~b*~b 2 = ( V , ~ V )  (3.3) 

~b*=(V* ), (3.1) becomes the nonlinear Schr6dinger where ~ = ( g ) ,  
equation: 

i h  a ~  = _ .  h 2 .... V2~ +f2ro2~, ~ 2 (3.4) 
at 2m0 

Putting (Madelung, 1926) 

~ = Ae is 

n = A  2 

h 
v = - -  grad S 

m0 

one obtains from (3.4) the hydrodynamic form of the nonlinear Schr6dinger 
equation: 

av 1 
- - +  (v. V)v= - - -  grad(V+ Q) 
at m0 (3.6) 

an 
- -  + div(nv) = 0 
at 

where 

Ii 2 v2,f~ Q= 
2mo 

(3.7) 
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Going to the long-wavelength limit, one can neglect Q against v. By 
superimposing on n a small disturbance n' and which results in a small 
velocity disturbance v, one can linearize (3.6)" 

Sv j 2 ~  Vn' 

St mo 

Sn r 
- - = - n  div v 
St 

(3.8) 

Putting 0 = div v, one obtains from (3.8) an equation for a compression 
wave 

with 

1 S20 

C 2 St  2 
. . . .  + V20 = 0 (3.9) 

c 2- j2r2n (3.10) 
mo 

where c is the propagation velocity of the wave. Demanding relativistic 
invariance in the long-wavelength limit would then simply mean that the 
propagation velocity must be equal to the velocity of  light. The wave equa- 
tion (3.9) is Lorentz invariant under Lorentz transformations if c is set equal 
to the velocity of light. For dimensional reasons, we may put n = 1/r 3, by 
which (3.10) becomes 

c 2 =f2/moro (3.11) 

Making, furthermore, the choice 

moroc = ti (3.12) 

one has 

f 2 = h c  (3.13) 

With this choice of the coupling constant f ,  Lorentz invariance is valid in 
the long-wavelength limit of low energies. 

4. FINITISTIC FIELD EQUATION 

To translate the field equation 

ih SV/ It 2 . . . .  V2V/ + ~ c r ~ * ~  
St 2too 

(4.1) 
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into a finite-difference equation, one has to use the operators A~ and A~. 
Henceforth, calling A~=A0, Ai ---At, A3=Do, At 3 =D1, one has to make the 
substitutions 

a V ~ A I v  
Ot 

V2V ~ D~tll (4.2) 

If in the first of these I is set equal to the smallest time interval to, one 
has because of (2.7) 

2 . ,[to a~ 
AI Ig = ~o sinn!t7 ~,] ~ (4.3) 

whereby the energy operator becomes 

E= i/iA~ (4.4) 

For the replacement of the differential operator for the space part, we 
have to solve (2.13) for N=3:  

[~2 d (02 d ) -  3(2)2]D0(0) : 0 (4.5) 

With the condition lim, 0_,o Do = 1, one finds 

sinht,f3(ro/2)Ol 
Do (4.6) 

,r a 

and, therefore, because of (2.14) 

(~)  2dD~ (212dD~176 (4.7) 
o,=  = 7oj da, dO a 

where 0,= {O/ax, O/Ov, O/Oz} = (a,, 0y, 0,}, and 2 2 0 = (~x --~ Oy -Jr- ~2) 1/2" 

Explicitly one finds 

DI = (2)2{cosh[,/j(2)0] sinh[,/J(ro/2)O]~O~ (4.8, 
 (ro/2)o J o 

Expanding the bracket in (4.8) up to third-order terms, using 

cosh x = 1 + x2/2 +" " �9 

sinh x = x + x3/6 +. �9 �9 
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one finds as required that 

lim D1 = ~i (4.9) 
ro~O 

With the replacement of a~ by D1, the quantum mechanical momentum 
operator p = (fi/i) O/Oq should be replaced by 

p = ~ D l  (4.10) 
l 

To ensure the integrity of the classical Poisson bracket relation {q, p} = 
1, a change in the momentum operator p must be accompanied by a change 
in the position operator q. If in the quantum mechanical commutation 
relation 

pq - qp = fi/i (4.11) 

p is given by (4.10), the position operator q must be given by 2 

q=(Oi~r (4.12) 
\Dd 

and for which limr0-. 0 q = r. 
The commutation relation for the field operators, (3.2), is thereby 

changed into 

[ 9'(r) V/f(r')] = D(Ir - r'l) (4.13) 

where, in accordance with the finite-difference calculus, D(lr-r ' l )  is a 
generalized three-dimensional delta function for which 

lira O( l r -  r'l) = cS([r- r'l) (4.14) 
ro--*O 

In Leibniz's operator notation one may formally put 

resulting in the operator equation 

1/(d/dx) = ( l / a )  dx = f dx (4.16) 

2For the connection of the position operator with the position eigenfunction, see the Appendix. 
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Applied to a one-dimensional delta function, one has 

f _ ~  1 1 . .~ (x )=  1 (4.17) ~(x) dx= ~(x) dX=d/dx 
o ~  

Since for finite-difference operations d/dx  is replaced by D~, the equation 
corresponding to (4.17) is 

1 
- -  D ( x )  = 1 ( 4 . 1 8 )  
D~ 

and for the three-dimensional D function occurring in (4.13) 

1 
D(lr-r ' l )  = 1 (4.19) 

If one replaces in D~ the operator symbol 0i = O/axi by the equivalent opera- 
tor symbol (S axi) -~, and thereafter expand D~ -3 into a power series of the 
operator S Ox~, (4.19) then consists of an infinite number of integrations 
(very much as D~ consists of an infinite number of differentiations). 

Making the replacement (4.2), we find that the field equation (4.1) 
translated into a finitistic form is 

ti 2 
ihA~ V," = - - -  D~0/+ hc~ ~,t ~t ~ (4.20) 

2m0 

With the help of (3.12), and furthermore assuming that c= to~to, one can 
bring (4.20) into a form in which it depends only on the parameters r0 
and to: 

itoA1 IF = - �89 + r3~t~ ~ (4.21) 

To obtain the finitistic form for the quantum mechanical equation of 
motion of an operator F 

dF i 
dt - li ( H F - F H )  - [H, F] (4.22) 

where H is the Hamilton operator, the rhs remains unchanged, because the 
Poisson bracket for any dynamical quantity can be reduced to a sum of 
Poisson brackets for position and momentum, whereas in the lhs the opera- 
tor d/dt  has to be replaced by A~. The equation of motion (4.22) is therefore 
changed into 

A ,F=~  [H, F] (4.23) 
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5. LAGRANGE FORMALISM 

The proposed finitistic field theory is also fully consistent with the Lag- 
range formalism, provided we replace everywhere the space and time differ- 
entiation operators by finite-difference operators. For an unquantized 
classical field, the operators ~t and ~* are replaced by the functions ~b and 
~b*, and one has for the Lagrange density 

j~2 
s i~ i~b*A,~-- -  ( O,q~ *)( D,dp) - �89 ticr2o( ~b * dp) 2 

2too 
(5.1) 

Variation with regard to ~b* according to 

0 ~  0Ae 
- - -  D ~  - -  = 0 ( 5 . 2 )  
aO* a(D,r 

results in the finitistic classical field equation 

~2 
i~A, ~ = - D ~ 0  + h c & b *  ~ 2 (5 .3)  

2too 

If the variation is carried out with regard to ~b, according to 

0Le OA a 0Ae 
- - - D l  - -  AI =0 (5.4) 
o4~ O(D, rb) O(A,4~) 

one obtains the conjugate complex equation of (5.3) by replacing ~b ~ q~*, 
& 4~--' -A14:. 

The momentum density canonically conjugate to ~b is 

0Le 
~ r -  - -  - iti4,* (5 .5)  

o ( A , ~ )  

and hence the Hamilton density 

H = 7rAl ~ - 

ifi i c r ~  * ~ 2rr 
- 2m---oo ( D I  ~r)(D~ r - 

~2 

2mo 
- - -  (D,O *)(D,~) + �89 ~c~( ~ * O y (5.6) 
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We are now in a position to prove that the unquantized and quantized 
field equations formally agree. Because of (4.23), the operator V obeys the 
equation of motion 

/hA, ~ = [~v, H] (5.7) 

where 

H =  D~-3H (5.8) 

with D] -3 the finite-difference volume integration operator satisfying (4.19), 
We therefore must have 

ihz~, ~t=[ ~t, D?3' 2mob2 ( D~ ~fl')( D~ ~t') 1 

+ [V, DT~'�89 ''] (5.9) 

To evaluate commutators in (5.9), we have to use (4.13). In the first commut- 
ator we obtain by partial (finite-difference operator) integration 

[~, D[3'(DI Vt') " (DI t?')] = - [ ~ ,  D~-3'~t'D~t'V '] 

=-D;~'[~/, ~*']D~'v' 
=-D;3'D~'~/D(Ir-r'I)=-D~ (5.10) 

For the second commutator,  the integrands have the form 

7t ~ '~ t ' ~* '~  ' - Vtt,~v' ~,t'~'~v 

= ~ t ,~  ~,,Vt,~, + D ( ] r -  r'l) ~,' Vt'V' - ~tt'~'V*'Vt'~ 

= ~ t t '~v '~ ,* '~ ' -  ~*'~'~*'V'~v + D ( l r -  r'l) ~v'~,,*' ~' 

= ~ t 'V ' [Vt~ t '~ ' -  Vt'V'Vt] + D(lr-r'l)~v'~v*'~v' 

= Vt"~' v'D(I r - r ' l )  + D(Ir - r'l) ~'~*'~" 

= 2 ~vt'~,qg'D(Ir- r']) (5.11) 

Multiplying (5.11) by D~ -3' then leads to 2~t~tg.  Inserting the results 
of (5.10) and (5.11) into (5.9), one obtains the operator field equation (4.20), 
which shows that the classical and quantum equations have the same form. 

Finally, we may prove that our finitistic field theory conserves the num- 
ber of particles. With the particle number operator 

N• = D]-3~t ~ , (5.12) 
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one has to show that 

i~iAl N-- [N, H] = 0 (5.13) 

Since it is well known that for a nonrelativistic field theory without 
interaction, but in the presence of an external potential, the particle number 
is conserved, we have only to show that this is also true if the nonlinear self- 
interaction term is included. In the commutator it leads to integrals with 
integrands of  the form [and which can be transformed using (4.13)] 

~, t i/i i//t ' i//' I//t ' i//' -- I//t ' I//' 1//t ' I//' i//t I// 

= ~ t ~ , t ' ~ , ' ~ t ' ~ / ' - t -  v * D ( I r - r ' I ) v ' V t ' V  ' -  i//t'l/z'lp, t '~' lp, t~, 

= IV*'lp, t i/fl//i//t'l/z' + ~ * D ( I r -  r ' l ) ~ ' ~ t ' w  - i//t ' l// ' l/ lt ' l// ' l//t l/ l 

= Ip't'l//'l//tl//I//t'l/z ' -  ~ ' t ' D ( I r -  r ' l )~ '~ t '~ "  + ~ ' t D ( I r -  r ' l ) ~ ' ~ / ' ~ '  

- i//t ip,, i//t ' ~/' i//t ~ 

= ~ t ' ~ ' [ ~ t ~ v t ' l / z ' -  i / / t ' v ' ~ t ~ ]  + ~ , t D ( I r - r ' l )  V '~ * '  ~ '  

- V, t 'D ( I r -  r ' l ) ~ t ' ~  ' (5.14) 

In (5.14) the last two terms cancel upon integration (multiplication 
with D?3). The first term is zero as well, because it can be reduced to a term 
which would arise in (5.13) in the l~resence of an externally applied potential. 
It would contain the term VtV~"V ' -  Vt'V'V*V, and is of the same form 
as the square bracket in (5.14). It therefore follows that the number of 
particles is conserved. 

6. MAXIMUM ENERGY AND MOMENTUM 

For energies E~moc 2, we can approximate the finite-difference field 
equation (4.20) by (4.1) and the commutation relation (4.13) by (3.2). In 
this approximation the field equation leads to a phonon-roton spectrum 
below the scale moC 2, as in the theory of superfluidity. In the vicinity of 
E~-moc 2, and where the approximation becomes invalid, departures from 
this energy spectrum can be expected. It limits the dimensionality of the 
Hilbert space and thereby eliminates all divergences. To study this departure, 
we may omit the nonlinear self-coupling term. If the free field is limited in 
the dimensionality of the Hilbert space, the self-coupling cannot alter this 
fact. 

The finite-difference field equation 

h 2 
i~iAj ~, -- - - -  D ~  (6.1) 

2rno 
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has for a wavefield ~t = ~(x,  t) the form 

2i/i sinh Vt 
to 

8too c2 

For a plane wave 

IV = A e i(kx-~ 

(6.2) leads to the dispersion relation 

3 

[x/~(ro/2)k] 2 ( 

Putting 
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s inh[~( ro /2)  O/Ox]12 1 
~ O ' / ~ x  J (a/0x) 2 ~  (6.2) 

(6.3) 

,64, 

(6.9) 

(6.1o) 

The maximum energy is then computed with the energy operator (4.4): 

Emax = (2fi/to) sin(O~maxt0/2) 

= 2moc 2 sin(Ogmaxto/2) 

--~ 1.14moc 2 

From (6.8) we also have 

r -~ 1.22 

sin(c0maxto/2) " 0.57 (6.8) 

and 

x=~(ro/2)k (6.5) 

one can write instead of  (6.4) 

[3 sin(cOto/2)]l/2=f(x) 
(6.6) 

In the limit x--* 0, one h a s f ( x )  ~ x ,  and for x--~ oe,f(x) ~0. The function 
f(x) has a maximum at x-~2.1, where f ( 2 . 1 ) _  1.3. We therefore find that 

km~ ~ 2.4/r0 (6.7) 
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and hence 

W i n t e r b e r g  

fOma----2x = 0.56 r~ = 0.56c (6.11) 
kmax to 

Neglecting the nonlinear term in the nonfinitistic field equation (4.1), 
we find that the energy spectrum there is given by 

E = h2k2/2mo (6.12) 

It is unbounded because even in a Galilei-invariant nonfinitistic field theory 
without a cutoff the zero-point energy is divergent. 

7. FINITISTIC FIELD THEORY AS A MODEL FOR A UNIFIED 
THEORY OF ELEMENTARY PARTICLES 

It has been shown that a nonlinear field theory of the form (4.1) leads to 
a vortex sponge of quantized vortices, and that it can explain both Maxwell's 
electromagnetic and Einstein's gravitational vacuum feld equations as col- 
lective excitations of this vortex sponge (Kelly, 1976; Winterberg, 1990). 
However, it cannot explain Dirac spinors. Furthermore, with the mass m0 
set equal the Planck mass, the zero-point vacuum energy is ,-,1095 g/cm ~. 
This large mass density would lead to large gravitational fields, which are 
obviously not observed. To compensate the large mass density of the zero- 
point energy, one could in principle introduce a large cosmological constant, 
but this is a procedure which is not very satisfactory. The problem, however, 
can be overcome if physical reality also includes the countable set of all 
negative integers, which together with the natural numbers (respectively 
positive integers) have the same cardinal number No as the natural numbers 
alone. This suggests that the fundamental field equation must have two 
components. It has been shown that the two-component nonlinear operator 
field equation 

- 0V~ h2 2 2 , 
i~ - -  = ~ = - -  V V=L + 2~cro(v+ V+ - V*- V-) V* (7.1) 

~t 2m0 

can eliminate the large zero-point mass density of the vacuum and also leads 
to Dirac spinors (Winterberg, 1988, 1991). 

Translated into its finitistic form, (7.1) becomes 

I 2 itoA~ V:~ = T ~ D I  V~- + 2ro3[ u/t+ ~+ - Vt-V-] V~ (7.2) 

with (7.1) the long-wavelength approximation of (7.2). 
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In the approximation (7.1), the field equation can be viewed as an 
assembly of densely packed Planck masses of both signs, resembling a model 
for the vacuum suggested by Sakharov (1968), who postulated the existence 
of "ghost particles" to compensate the large mass density of the positive 
Planck masses. 

8. FINITISTIC FIELD THEORY AND CANTOR'S 
CONTINUUM HYPOTHESIS 

At Cantor's time it was generally believed that besides matter, there 
must be an aether, qualitatively different from matter, and filling all of space~ 
Assuming that physical space has the same structure as mathematical space~ 
Cantor came up with the strange hypothesis that all material objects are 
made up from No mass monads, and the aether atoms are made up from 
the infinitely larger number of N, aether monads (Cantor, 1932). Cantor's 
hypothesis appears to have some relation to the proposed finitistic field 
theory, as can be seen as follows: The finitistic field theory is motivated by 
the assumption that physics should be described by countable numbers only, 
having the cardinal number No. But in formulating such a finitistic field 
theory, the field equations can only be expressed as differential equations of 
infinite order. Since a differential equation of any order, and certainly of 
infinite order, covers both the countable and the noncountable numbers, 
which have the cardinal number No + N~ = N~, the infinite-order differential 
equation is therefore reminiscent of Cantor's idea that the aether atoms are 
made up of Nj aether monads. And by going to the long-wavelength limit 
where the field equation can be approximated by a Schr6dinger equation 
for all Planck masses, the Planck masses are reminiscent of Cantor's mass 
monads. 

In its two-valuedness, the finitistic field equation (7.2) is representative 
for the SU2 group, which is also the rotation group in a three-dimensional 
space of constant curvature. It has been conjectured by von Weizs/icker 
(1971) that the three dimensions of space suggest a two-valuedness of the 
fundamental field. Assuming that physical space has constant curvature and 
is finite, the number of discrete steps of length r0 which can be taken in space 
in making a round trip is given by 

N~R/ro (8.1) 

where R is the curvature radius of this space. The number N, of course, is 
much smaller than N0. One might therefore entertain the conjecture that 
within a Planck radius step, space can be subdivided into N discrete points, 
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which only in the limit R ---, oo becomes equal to No. The smallest measurable 
distance therefore would be 

rmin ~ r o / N , . , ~ / R  (8.2) 

With ro 2 = G~i/c s (G is Newton's constant) and R ~ GM/c  2 (M is the mass of 
the universe), one finds that 

rmi."~ h /Mc  (8.3) 

which is the Compton wavelength of the universe. The smallest distance in 
a finite universe, which was guessed by a number-theoretic conjecture, there- 
fore turns out to be equal to the smallest distance which can be measured 
by quantum mechanics, using the energy of the entire universe. With 
r0 ~ 10 -33 cm and R.~ 1028 cm, one obtains rmin "" 10 -94 cm. 

APPENDIX 

With ~n(q) the (one-dimensional) position eigenfunction and q the posi- 
tion operator, the eigenvalues q, and eigenfunctions are determined by the 
equation 

qv~(q) = qnv~(q) (A. 1) 

If the position can be precisely measured, one would have 

V,(q) = 6 ( q -  q~) (A.2) 

Inserting (A.2) into the lhs of (A.1) and integrating from q = - o v  to 
q= +0% one has 

f_ ~ q 6 ( q -  q,,) dq=q,, (A.3) 
oO 

Using Leibniz's operator notation S = 1/d, one can also write for (A.3) 

dq 
--~-. q. 6 ( q -  q,) = q, (A.4) 

For q = qn one has 

- •  ~ ( q - q , ) =  1 (A.5) 
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Now, if the position eigenfunction is instead given by the generalized 
delta function D(q-qn), which was defined by (4.18) such that 

1 
D--~ D(q-  qn) = 1 (A.6) 

it follows by comparison with (A.4) and (A.5) that with the position eigen- 
function given by D(q-q,,), the position operator must be replaced by 
putting 

q D, \dq/ q (A.7) 

which is equivalent to (4.12). 
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